Industry-Leading Lifetime Warranty    |    FREE SHIPPING    |    Hassle-Free Returns

Edina, Minnesota Water Quality Report

RSS

Sources Of Drinking Water in Edina, Minnesota

Where does Edina get its water from? The City of Edina draws surface water from the Mississippi River to supply water to its residents. Surface water is prone to algae growth and decaying organic material. Algae blooms and decaying aquatic plants cause the “fishy”, swampy, earthy, musty taste and smell reported every spring. Heavy rains and melting snow can wash chemicals, herbicides, and pesticides from agriculture and industry into rivers. 99 rural Minnesotan communities still release sewage into lakes and streams due to a lack of funds for infrastructure improvements.

Because the Mississippi is a relatively dirty water source, Chlorine and Ammonia, which form Chloramines are added for disinfection. These give Edina drinking water an occasional “swimming pool taste”.  The Mississippi River naturally contains moderate levels of Hard Water Minerals and Iron. Ferric Chloride is added to help reduce the brown/yellow color of the source water. A chemical softening process is also used to reduce water hardness from 14 grains down to 5-6 grains. Lastly a poly/ortho phosphate is added to help reduce the corrosive effects of the disinfectants. Edina (via Minneapolis) has the largest distribution system in the Midwest. There are roughly 1,000 miles of unlined cast iron pipe. Is Edina's water safe to drink? Does Edina put fluoride in the water?

Source: City of Edina, MN

Contaminants Found in Edina's Water Supply

(Detected above health guidelines)

Bromodichloromethane

3rd party independent testing found that this utility exceeds health guidelines for this drinking water contaminant. Bromodichloromethane is one of the total trihalomethanes (TTHMs) that formed when disinfectants, such as chlorine, are used to treat tap water. What are the risks of drinking tap water with Bromodichloromethane? Cancer, Kidney & Liver Damage. Bromodichloromethane and other disinfection byproducts increase the risk of cancer and may cause problems during pregnancy.  In recent animal studies, the main effect of eating or drinking large amounts of Bromodichloromethane is injury to the liver and kidneys. Find out more about this contaminant and how to remove it here.

Chloroform

3rd party independent testing found that this water utility exceeds health guidelines for this drinking water contaminant. Chloroform, is a total trihalomethanes (TTHMs) which is formed when disinfectants are used to treat tap water. Most of the chloroform found in the environment comes from industry. Chloroform enters the environment from chemical companies and paper mills, It is also found in waste water from sewage treatment plants and drinking water to which chlorine has been added. Chlorine is added to most drinking water and many waste waters to destroy bacteria. Small amounts of chloroform are formed as an unwanted product during the process of adding chlorine to water. What are the risks of drinking tap water with chloroform? Cancer, central nervous system (brain), liver, and kidneys. Cancer of the liver and kidneys developed in rats and mice that ate food or drank water that had large amounts of chloroform in it for a long time. We do not know whether liver and kidney cancer would develop in people after long-term exposure to chloroform in drinking water. Based on animal studies, the Department of Health and Human Services has determined that chloroform may reasonably be anticipated to be a carcinogen (a substance that causes cancer). Find out more about this contaminant and how to remove it here.

Chromium (Hexavalent)

3rd party independent testing found that this water utility exceeds health guidelines for this drinking water contaminant. The movie Erin Brockovich alerted the public to the great suffering the little town of Hinkley, California experienced due to hexavalent chromium in their drinking water. Today, Hinkley is little more than a ghost town thanks to continued water contamination, health concerns, and plummeting property values. Chromium (hexavalent) is a carcinogen that commonly contaminates American drinking water. Chromium (hexavalent) in drinking water may be due to industrial pollution or natural occurrences in mineral deposits and groundwater. What are the risks of drinking tap water with Chromium (hexavalent)? Cancer. A 2008 study by the National Toxicology Program, part of the National Institutes of Health, found that chromium-6 in drinking water caused cancer in laboratory rats and mice. That study and other research led scientists at the California Office of Environmental Health Hazard Assessment to conclude that chromium-6 can cause cancer in people. Find out more about this contaminant and how to remove it here.

Dichloroacetic acid

3rd party independent testing found that this water utility exceeds health guidelines for this drinking water contaminant. Dichloroacetic Acid is one of the five haloacetic acids and a member of the chloroacetic acids family. It is an essential chemical compound in medical research, especially in cancer treatment. This type of chloroacetic acid is a trace product of the process of chlorination of drinking water. Dichloroacetic Acid can get into water systems through improper disposal of waste from pharmaceutical factories. What are the risks of drinking tap water with Dichloroacetic acid? Cancer, Reproductive Issues, Child Development. Dichloroacetic Acid in drinking water may cause health problems during pregnancy, liver and kidney damage, reproductive difficulties, eyes and nerve problems, and an increased risk of getting cancer. Dichloroacetic Acid is common in municipal water since it is a trace product of the chlorination of drinking water.  Find out more about this contaminant and how to remove it here.

Nitrate

3rd party independent testing found that this water utility exceeds health guidelines for this drinking water contaminant. Nitrate is one of the most common groundwater contaminants in rural areas. Nitrate gets into water from fertilizer runoff, manure from large animal feeding operations and wastewater treatment plant effluent. It is regulated in drinking water primarily because excess levels can cause methemoglobinemia, or "blue baby" disease. What are the risks of drinking tap water with nitrate? Cancer & Child Development. Scientists at the National Cancer Institute found a greater incidence of bladder cancer among people who drank water with nitrate concentrations above half the federal limit. Some studies also report that nitrate contamination of tap water can increase the risk of developmental defects for children born to mothers who drank nitrate-contaminated water during pregnancy. Find out more about this contaminant and how to remove it here.  

Total Trihalomethanes (TTHMs)

3rd party independent testing found that this water utility exceeds health guidelines for this drinking water contaminant. Total Trihalomethanes (TTHMs) are the result of a reaction between the chlorine used for disinfecting tap water and natural organic matter in the water. At elevated levels, TTHMs have been associated with negative health effects such as cancer and adverse reproductive outcomes. Now a study by government and academic researchers adds to previous evidence that dermal absorption and inhalation of TTHMs associated with everyday tap water use can result in significantly higher blood TTHM concentrations than simply drinking the water does. What are the risks of drinking tap water with Total Trihalomethanes (TTHMs)? Cancer. Studies from around the world, including the United States & Europe have found that drinking tap water that carries Total Trihalomethanes increases the risk of developing cancer. In animal studies, all trihalomethanes cause liver, kidney and intestinal tumors. Find out more about this contaminant and how to remove it here.

Trichloroacetic Acid

3rd party independent testing found that this utility exceeds health guidelines for this drinking water contaminant. Trichloroacetic acid will get into your drinking water when naturally-occurring organic and inorganic compounds found in the water reacts with chlorine or other disinfectants used to purify drinking water. Trichloroacetic acid is one of the group of five haloacetic acids regulated by federal standards. What are the risks of drinking tap water with Trichloroacetic acid? Cancer & Pregnancy Issues. According to the Environmental Protection Agency (EPA), individuals exposed to the compound in excess of the "Maximum Contaminant Levels" during the duration of several years are prone to an increased risk of getting cancer. Long-term exposure to the chemical will increase your chances of acquiring a tumor. Oral exposure or the drinking of contaminated water may cause problems during pregnancy. It can also cause developmental issues to the fetus. Find out more about this contaminant and how to remove it here.

Fluoride

There is a drinking water standard of 4 ppm for fluoride but there is no health guideline for this contaminant and much is not known about the effects of fluoride long term on the human body. This water utility did not exceed the drinking water standard for fluoride but fluoride was found in their water. Fluoride occurs naturally in surface and groundwater and is also added to drinking water by many water systems. The fluoride that is added to water is not the naturally occurring kind, the main chemicals used to fluoridate drinking water are known as “silicofluorides” (i.e., hydrofluorosilicic acid and sodium fluorosilicate). Silicofluorides are not pharmaceutical-grade fluoride products; they are unprocessed industrial by-products of the phosphate fertilizer industry (Gross!). Since these silicofluorides undergo no purification procedures, they can contain elevated levels of arsenic — more so than any other water treatment chemical. In addition, recent research suggests that the addition of silicofluorides to water is a risk factor for elevated lead exposure, particularly among residents who live in homes with old pipes. What are the risks of drinking tap water with Fluoride? Unknown. A growing body of evidence reasonably indicates that fluoridated water, in addition to other sources of daily fluoride exposure, can cause or contribute to a range of serious effects, including neurological issues, arthritis, damage to the developing brain, reduced thyroid function, and possibly osteosarcoma (bone cancer) in adolescent males. Animal studies indicate a moderate level of evidence that support adverse effects on learning and memory in animals exposed to fluoride in the diet or drinking water. Find out more about this contaminant and how to remove it here.

What are the best types of filters to remove these contaminants?

Two dominant carbon filter choices are solid activated carbon blocks and granular activated carbon filters (GAC). Unfortunately, our tap water can contain tiny microscopic particles that impact your long term health, the taste and smell of the water and microbiological organisms that can actually make people sick shortly after drinking. Fortunately, there are water filtration products that remove many of the impurities from water. These filters often use activated carbon; activated carbon is a form of carbon processed to have small, low-volume pores that increase the surface area available for adsorption of contaminants or chemical reactions with the contaminants causing them to adhere to the carbon. At Epic Water Filters we use solid activated carbon blocks for our filters which we believe is the superior way to filter contaminants out of your water. Below we explain why we chose to use solid activated carbon block filters instead of a granular activated carbon filter.

 Filter Design

Granular activated carbon filters (GAC) have loose granules of carbon that look like black grains of sand. These black grains of carbon, are dumped into a container and the water is forced to travel through the container to reach the other side, passing by all of the grains of carbon. Solid block carbon filters, on the other hand, are blocks of compressed activated carbon that are formed with the combination of heat and pressure. These filters force the water to try to find a way through the solid wall and thousands of layers of carbon until the reach a channel which leads the water out of the filter. Both filters are made from carbon that’s ground into small particulate sizes. Solid activated carbon blocks are ground even further into a fine mesh 7 to 19 times smaller than the (GAC).

Flow Channels & Contact Time 

As water continually passes through (GAC) filters, flow channels begin to develop that allow the water to flow around the carbon. Flow channels also develop between the granules of carbon themselves, leading to less effective filtration as there is less and less contact time between the water and the carbon. Solid activated carbon blocks, on the other hand, are much tighter and won’t even let microbial cysts like giardia and cryptosporidium (7 to 10 Microns in size) pass through the filter without getting caught in the millions of layers of carbon. Because solid activated carbon blocks are compressed under pressure, they have millions and millions of different sized pores that cause the water to take a long slow path to get through the filter, increasing the contact time that the contaminated water has with the carbon looking for a way through. During this contact time is when contaminants like lead, adhere to the carbon and are removed from water. This happens during a process called adsorption, the other filtration method that solid activated carbon blocks use is called depth filtration. This is where the thickness of the carbon block filter comes into play to help remove contaminants as they have to pass through these thick carbon walls. The downside of solid activated carbon blocks is that they are often so tight that they can often get plugged up with organic and non-organic matter, forcing owners to replace them on a more regular basis. This is why when you are using a Brita water pitcher filter (GAC), the filter will keep going and going long after it has stopped removing any water contaminants. A good 5 micron sediment filter in front of your carbon block filter is a good way to extend the life of the solid activated carbon blocks and make it more efficient.  

Solid Activated Carbon Blocks  vs. Granulated Activated Carbon 

The (GAC) filters are cheap and simple to manufacture, which is why most water filtration companies choose this method for manufacturing. Solid activated carbon blocks on the other hand take longer to manufacture and are more expensive to make but with this expense you will get superior contaminant removal because the water must take a more strenuous path through millions of layers of compressed carbon before it reaches your drinking glass.

Better Filtration

The solid activated carbon blocks, like the one used in the Epic Smart Shield & Epic Water Filter pitchers, remove more contaminants than the (GAC) filters due to the larger surface area and the thickness of the carbon walls, this is why Epic Water Filters has standardized on the solid activated carbon block design for our water pitchers and our under the sink water filter. (GAC) filters do not do enough to reduce contaminants, this is why they are not used when there is a chance of bacteria or cysts in the water. They are truly not "Epic" so that is why we have passed on the (GAC) filter design and let our competitors like Woder, Brita, Pur, and Invigorated Water use these loose packed carbon filters for sub-par contaminant removal.

With solid activated carbon blocks the contaminants are in contact with more carbon for a longer period and therefore have more time to remove stubborn contaminants like lead (Epic Pure Pitcher 99.9% removal), fluoride (Epic Pure Pitcher 97.8% removal), and PFCs (Epic Pure Pitcher 99.8% removal). Carbon blocks can remove chlorine more effectively, eliminate undesirable odors, and removal of endocrine disruptors like volatile organic compounds. (GAC) filters, on the other hand, have small particles that move around under the pressure of water so they do not have as much uniformity throughout and therefore less contact time with the water and less contaminant removal. 

What about Reverse Osmosis? 

RO filter systems do remove a lot of contaminants. The downside of RO is that it is expensive and wastes a lot of water. Each RO system wastes an average of 5 to 6 gallons for every gallon it produces of drinking water. Also RO systems remove trace minerals and other beneficial substances found in water that your body needs (calcium, manganese, iron and other important nutrients). This is why RO water is considered by many in the natural health world to be dead water and it is said that demineralized water is detrimental to general health due to vitamin and mineral depletion. The other main downside of RO systems is that after your water passes through the filter process, it sits inside of steel drum that is lined with a butyl rubber bladder which is made from polyisobutylene. The filtered water sits in this butyl rubber bladder until it is used. All rubber and plastic containers leach into water at some level. Carbon block filters do not have these issues.  Epic Water Filters is committed to finding the best ways to filter contaminants out of your water for a healthier life, solid activated carbon block filters are what we believe filters the best. Have questions about your water?Great we love to talk about all things water related. Call us @ 720-600-0371 M-F 9am to 5pm MST or email our support team your questions support@epicwaterfilters.com and we will get back to you as soon as possible.

Epic Pure Pitcher

April Jones

A Boulder, Colorado based hiker, blogger, and water quality expert...

Previous Post Next Post

  • April Jones